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ABSTRACT
This brief announcement presents a persist ordering problem un-
covered in implementing durable lock-free data structures for non-
volatile memory, and proposes a hardware solution with persistent
atomics in the Arm instruction set architecture.
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1 INTRODUCTION
Lock-free programming has been widely used towards concurrent
data structures, such as linked lists and queues, since it was in-
troduced two decades ago [7, 16, 21]. In-memory databases and
message queues heavily rely on lock-free data structures for in-
dexing and queuing [15]. More recently, with the emergence of
non-volatile memories such as 3DXP and PCM that promise to
displace DRAM due to higher density and non-volatility, various
efforts have been taken to design lock-free data structures for emerg-
ing non-volatile memories [2, 6, 8, 17], as lock-free programming
does not incur any logging overhead that’s required of lock-based
or transaction-based programs for failure atomicity [5]. Meanwhile,
several efforts also aimed to port existing lock-free data structures to
non-volatile memories [9, 10], similar to Aquire-Release Persistency
[11, 12]. For instance, durable linearizability [9] was introduced
for converting lock-free programs to persistent lock-free programs.
In addition, software primitives to construct lock-free programs
such as persistent multiple-word compare-and-swap (PMWCAS)
have also been proposed to help with build more complex lock-free
data structures for non-volatile memories [3, 17, 22], such as doubly
linked list and trees. Industrial associations, such as SNIA and HMC,
have also come forward with standards that include support for
atomics with persistent memory [4, 18, 19].

2 THE PROBLEM
To make lock-free data structures work with persistent memory, an
atomic compare-and-swap (CAS) operation is no longer sufficient,
a cacheline flush operation followed by a synchronization barrier is
needed to make sure the data is persisted to the point-of-persistence
to synchronize the concurrent viewwith the recovery view for crash
consistency. As shown in Listing 1, swinging a pointer atomically
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by CAS then followed by a cacheline flush and a synchronization
fence is needed to publish a new node to a lock-free singly linked
list.

Listing 1: A compare-and-swap is followed by a cacheline flush and a fence
1 i f ( CAS(& l a s t −>next , next , node ) ) {
2 FLUSH(& l a s t −>next ) ;
3 FENCE ;
4 }

Arm v8.1 [14] introduces compare-and-swap atomics. In Arm
v8.0 [13] and prior versions, atomic compare-and-swap can be
implemented with load-linked and store-conditional pairs, i.e., LDXR
and STXR. As CAS and FLUSH are two separate operations, i.e., non-
atomic, interrupts can happen in between and inconsistencies can
arise due to write-after-read dependencies, where a thread persists
a new value computed as the result of reading a value that might
not have been persisted.

Figure 1: Two threads A and B insert a node each to a lock-free linked list.

For instance, as illustrated in Figure 1, Node 2 is inserted by
Producer A thread after Node 1, the Next pointer of Node 1 gets
atomically switched (CAS) to point to Node 2 from Node 4, however,
this CAS is not persisted, i.e., code execution gets interrupted after
Line 1 but before Line 2 as shown in Listing 1. Then, Node 3 gets
inserted by Producer B thread after Node 2 as CAS for Node 2 is
already visible to all concurrent threads. CAS atomically switches
the Next pointer of Node 2 to point to Node 3 from Node 4, and this
CAS gets persisted. If a power failure happens at this point before
Line 2 get executed for Producer A, the application that uses the
linked list would be left in an inconsistent state, with both Node 2
and Node 3 lost, as the Next pointer from Node 1 to Node 2 has not
been persisted. As Node 3 has been published but can’t be accessed
after a reboot, and other data may have been persisted that are
accessed through or dependent on Node 3, all subsequent accesses
to such data will not be possible, therefore causing data loss that
should have never happened.

The problem described above is particular to lock-free linked
lists with CAS for persistent memory, in addition to two other well-
known problems for lock-free linked lists with CAS. Valois [20]
described both problems with solutions for lock-free linked lists
using compare-and-swap: a) The concurrent insertion and deletion
problem, where both nodes can be lost, similar to the problem
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above; and b) The concurrent deletions of adjacent nodes problem,
where the second deletion can be undone. Harris [7] also proposed
an improved pragmatic solution to the first problem.

The persist ordering problem is not limited to lock-free data struc-
tures alone, the problem can manifest with large scale databases,
such as SAP HANA[1], while interacting with operating systems.
Linux filesystems often creates files with holes by default, storage
is physically allocated only at the time of actual writes to the file.
Formmap’ed files, not all memories are allocated atmmap call time,
i.e., demand paging. When a userspace application does a store to
a location in an mmaped DAX file with a ’hole’, the store causes
a page fault and the file system fills the hole with a new memory
allocation. The filesystem metadata that gets updated by that fault
may not be flushed to persistence even though userspace stores are
flushed and persisted, if a power failure strikes before the metadata
changes are persisted, the application will be left in an inconsistent
state. As a result, the recovered application, i.e., SAP HANA, can
crash upon accesses to the data stored onto the lost pages, as the
stores to such pages would have been lost even though the flushes
had been performed.

The problem can be formulated as follows:

Figure 2: Inconsistencies can arise due to write-after-read dependencies,
where a thread T2 persists a new value computed as the result of reading a
value from T1 that might not have been persisted.

where the inconsistent state with Z = 1 and Y = 0 is possible
following a power failure. Y and Z are both initialized to zero at start.
T1 can’t guarantee to execute DCCVAP(&Y) and DSB atomically with
Y=1, i.e., DCCVAP and DSB can get executed after T2 has completed.

3 SOLUTIONS
3.1 Software Solutions
There are software solutions that can overcome the problem, such
as using metadata, i.e., extra communication to indicate whether
a line has been persisted or not between different threads [17, 22].
However, they suffer from overloading reads and come at a high
cost, i.e., ∼10% overhead as in [22]. There have been proposals to
make compare-and-swaps recoverable as well with logging [3].

A software solution to prevent this from happening can be using
metadata to indicate whether Y has been persisted, and a) making
the normal read ’IF Y=1’ into a persist read, i.e., if Y has not been
persisted, persist Y first and then return the value of Y [22], or
b) looping around read ’IF (Y=1)&&Persisted’ to wait until Y is
persisted. This would overload all reads, all the reads would pay
the cost of checking whether the line has been persisted. Instead
of overloading reads with the burden to persist dirty data, and as
reads are much more frequent than writes, we propose to shift the
burden to writes, to make compare-and-swaps atomic with persists.

3.2 Persistent Stores
Here we describe the range of instructions proposed to Arm in-
struction set architecture [13, 14] to make such stores persistent,
including store exclusives, store releases, and atomics.

(1) Persistent store exclusives, which can be used to build per-
sistent atomic operations together with load exclusives.
• PST[L]XR[B|H], PST[L]XP

(2) Persistent store releases, i.e., stores with ordering semantics,
combine store and persist for acquire-release persistency.
• PSTLR[B|H]

(3) Persistent atomics, which can be used to build lock-free data
structures.
• PCAS[P][A|L|AL][B|H]
• PLD<OP>[A|L|AL][B|H] where OP = ADD, CLR, EOR, SET,
SMAX, SMIN, UMAX, UMIN

• PSWP[A|L|AL][B|H]
where the leading P stands for Persistent. A stands for Acquire

(half barrier, order after), L stands for Release (half barrier, order
before), AL stands for Acquire-Release (full barrier, order both
before and after). B stands for Byte, H stands for Half-word, P
stands for Pair of words, i.e., granularity of operation.

The proposed instructions would fix the problem introduced in
the transformations as described in [9, 10] for durable linearizability
and in [11, 12] for language-level acquire-release persistency.

3.3 Persistent Lock-free Queue
The proposed persistent compare-and-swap instruction can sim-
plify porting lock-free data structures to persistent memory by
simply replacing CAS with PCAS, eliminating the need to FLUSH
and FENCE as shown in Listing 1. For instance, the enqueue opera-
tion of the durable queue as in [6] can be simplified as follows.

Listing 2: Implementation of a durable lock-free queue with PCAS
1 void enqueue ( T va lue ) {
2 Node ∗ node = new Node ( va l u e ) ; FLUSH ( node ) ;
3 while ( t r u e ) {
4 Node ∗ l a s t = t a i l ;
5 Node ∗ next = l a s t −>next ;
6 i f ( l a s t == t a i l ) {
7 i f ( nex t == NULL ) {
8 i f ( PCAS(& l a s t −>next , next , node ) ) {
9 CAS(& t a i l , l a s t , node ) ; return ; }
10 } e l se {
11 CAS(& t a i l , l a s t , nex t ) } } } }

4 CONCLUSIONS AND FUTUREWORK
The persist ordering problem as observed with durable lock-free
data structures for non-volatile memory is described, and a hard-
ware solution that involves new persistent store instructions is
proposed. The problem exists in userspace such as durable lock-
free data structures, the interactions between user space and kernel
space such as SAP HANA interacting with OS demand paging, as
well as transformations as proposed for durable linearizability and
acquire-release persistency. The proposed instructions would elimi-
nate the problem for all such cases on Arm, and the persist ordering
problem is not limited to the Arm instruction set architecture.

We’re conscious that our hardware-based solution shifts the bur-
den from software developers to CPU designers, which carries a
significant implementation cost. As future work, we’ll quantita-
tively evaluate the cost of software-based solutions as compared to
the cost of the hardware-based solutions as proposed in this brief
announcement.
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