
Brief Announcement: Persistent Atomics for Implementing
Durable Lock-Free Data Structures for Non-Volatile Memory

William Wang, Stephan Diestelhorst
Arm Research

{william.wang,stephan.diestelhorst}@arm.com

ABSTRACT
This brief announcement presents a persist ordering problem un-
covered in implementing durable lock-free data structures for non-
volatile memory, and proposes a hardware solution with persistent
atomics in the Arm instruction set architecture.

KEYWORDS
lock-free data structure; persistent memory; compare-and-swap

1 INTRODUCTION
Lock-free programming has been widely used towards concurrent
data structures, such as linked lists and queues, since it was in-
troduced two decades ago [7, 16, 21]. In-memory databases and
message queues heavily rely on lock-free data structures for in-
dexing and queuing [15]. More recently, with the emergence of
non-volatile memories such as 3DXP and PCM that promise to
displace DRAM due to higher density and non-volatility, various
efforts have been taken to design lock-free data structures for emerg-
ing non-volatile memories [2, 6, 8, 17], as lock-free programming
does not incur any logging overhead that’s required of lock-based
or transaction-based programs for failure atomicity [5]. Meanwhile,
several efforts also aimed to port existing lock-free data structures to
non-volatile memories [9, 10], similar to Aquire-Release Persistency
[11, 12]. For instance, durable linearizability [9] was introduced
for converting lock-free programs to persistent lock-free programs.
In addition, software primitives to construct lock-free programs
such as persistent multiple-word compare-and-swap (PMWCAS)
have also been proposed to help with build more complex lock-free
data structures for non-volatile memories [3, 17, 22], such as doubly
linked list and trees. Industrial associations, such as SNIA and HMC,
have also come forward with standards that include support for
atomics with persistent memory [4, 18, 19].

2 THE PROBLEM
To make lock-free data structures work with persistent memory, an
atomic compare-and-swap (CAS) operation is no longer sufficient,
a cacheline flush operation followed by a synchronization barrier is
needed to make sure the data is persisted to the point-of-persistence
to synchronize the concurrent viewwith the recovery view for crash
consistency. As shown in Listing 1, swinging a pointer atomically

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6184-2/19/06.
https://doi.org/10.1145/3323165.3323166

by CAS then followed by a cacheline flush and a synchronization
fence is needed to publish a new node to a lock-free singly linked
list.

Listing 1: A compare-and-swap is followed by a cacheline flush and a fence
1 i f (CAS(& l a s t −>next , next , node)) {
2 FLUSH(& l a s t −>next) ;
3 FENCE ;
4 }

Arm v8.1 [14] introduces compare-and-swap atomics. In Arm
v8.0 [13] and prior versions, atomic compare-and-swap can be
implemented with load-linked and store-conditional pairs, i.e., LDXR
and STXR. As CAS and FLUSH are two separate operations, i.e., non-
atomic, interrupts can happen in between and inconsistencies can
arise due to write-after-read dependencies, where a thread persists
a new value computed as the result of reading a value that might
not have been persisted.

Figure 1: Two threads A and B insert a node each to a lock-free linked list.

For instance, as illustrated in Figure 1, Node 2 is inserted by
Producer A thread after Node 1, the Next pointer of Node 1 gets
atomically switched (CAS) to point to Node 2 from Node 4, however,
this CAS is not persisted, i.e., code execution gets interrupted after
Line 1 but before Line 2 as shown in Listing 1. Then, Node 3 gets
inserted by Producer B thread after Node 2 as CAS for Node 2 is
already visible to all concurrent threads. CAS atomically switches
the Next pointer of Node 2 to point to Node 3 from Node 4, and this
CAS gets persisted. If a power failure happens at this point before
Line 2 get executed for Producer A, the application that uses the
linked list would be left in an inconsistent state, with both Node 2
and Node 3 lost, as the Next pointer from Node 1 to Node 2 has not
been persisted. As Node 3 has been published but can’t be accessed
after a reboot, and other data may have been persisted that are
accessed through or dependent on Node 3, all subsequent accesses
to such data will not be possible, therefore causing data loss that
should have never happened.

The problem described above is particular to lock-free linked
lists with CAS for persistent memory, in addition to two other well-
known problems for lock-free linked lists with CAS. Valois [20]
described both problems with solutions for lock-free linked lists
using compare-and-swap: a) The concurrent insertion and deletion
problem, where both nodes can be lost, similar to the problem

Session 8 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

309

https://doi.org/10.1145/3323165.3323166

above; and b) The concurrent deletions of adjacent nodes problem,
where the second deletion can be undone. Harris [7] also proposed
an improved pragmatic solution to the first problem.

The persist ordering problem is not limited to lock-free data struc-
tures alone, the problem can manifest with large scale databases,
such as SAP HANA[1], while interacting with operating systems.
Linux filesystems often creates files with holes by default, storage
is physically allocated only at the time of actual writes to the file.
Formmap’ed files, not all memories are allocated atmmap call time,
i.e., demand paging. When a userspace application does a store to
a location in an mmaped DAX file with a ’hole’, the store causes
a page fault and the file system fills the hole with a new memory
allocation. The filesystem metadata that gets updated by that fault
may not be flushed to persistence even though userspace stores are
flushed and persisted, if a power failure strikes before the metadata
changes are persisted, the application will be left in an inconsistent
state. As a result, the recovered application, i.e., SAP HANA, can
crash upon accesses to the data stored onto the lost pages, as the
stores to such pages would have been lost even though the flushes
had been performed.

The problem can be formulated as follows:

Figure 2: Inconsistencies can arise due to write-after-read dependencies,
where a thread T2 persists a new value computed as the result of reading a
value from T1 that might not have been persisted.

where the inconsistent state with Z = 1 and Y = 0 is possible
following a power failure. Y and Z are both initialized to zero at start.
T1 can’t guarantee to execute DCCVAP(&Y) and DSB atomically with
Y=1, i.e., DCCVAP and DSB can get executed after T2 has completed.

3 SOLUTIONS
3.1 Software Solutions
There are software solutions that can overcome the problem, such
as using metadata, i.e., extra communication to indicate whether
a line has been persisted or not between different threads [17, 22].
However, they suffer from overloading reads and come at a high
cost, i.e., ∼10% overhead as in [22]. There have been proposals to
make compare-and-swaps recoverable as well with logging [3].

A software solution to prevent this from happening can be using
metadata to indicate whether Y has been persisted, and a) making
the normal read ’IF Y=1’ into a persist read, i.e., if Y has not been
persisted, persist Y first and then return the value of Y [22], or
b) looping around read ’IF (Y=1)&&Persisted’ to wait until Y is
persisted. This would overload all reads, all the reads would pay
the cost of checking whether the line has been persisted. Instead
of overloading reads with the burden to persist dirty data, and as
reads are much more frequent than writes, we propose to shift the
burden to writes, to make compare-and-swaps atomic with persists.

3.2 Persistent Stores
Here we describe the range of instructions proposed to Arm in-
struction set architecture [13, 14] to make such stores persistent,
including store exclusives, store releases, and atomics.

(1) Persistent store exclusives, which can be used to build per-
sistent atomic operations together with load exclusives.
• PST[L]XR[B|H], PST[L]XP

(2) Persistent store releases, i.e., stores with ordering semantics,
combine store and persist for acquire-release persistency.
• PSTLR[B|H]

(3) Persistent atomics, which can be used to build lock-free data
structures.
• PCAS[P][A|L|AL][B|H]
• PLD<OP>[A|L|AL][B|H] where OP = ADD, CLR, EOR, SET,
SMAX, SMIN, UMAX, UMIN

• PSWP[A|L|AL][B|H]
where the leading P stands for Persistent. A stands for Acquire

(half barrier, order after), L stands for Release (half barrier, order
before), AL stands for Acquire-Release (full barrier, order both
before and after). B stands for Byte, H stands for Half-word, P
stands for Pair of words, i.e., granularity of operation.

The proposed instructions would fix the problem introduced in
the transformations as described in [9, 10] for durable linearizability
and in [11, 12] for language-level acquire-release persistency.

3.3 Persistent Lock-free Queue
The proposed persistent compare-and-swap instruction can sim-
plify porting lock-free data structures to persistent memory by
simply replacing CAS with PCAS, eliminating the need to FLUSH
and FENCE as shown in Listing 1. For instance, the enqueue opera-
tion of the durable queue as in [6] can be simplified as follows.

Listing 2: Implementation of a durable lock-free queue with PCAS
1 void enqueue (T va lue) {
2 Node ∗ node = new Node (va l u e) ; FLUSH (node) ;
3 while (t r u e) {
4 Node ∗ l a s t = t a i l ;
5 Node ∗ next = l a s t −>next ;
6 i f (l a s t == t a i l) {
7 i f (nex t == NULL) {
8 i f (PCAS(& l a s t −>next , next , node)) {
9 CAS(& t a i l , l a s t , node) ; return ; }
10 } e l se {
11 CAS(& t a i l , l a s t , nex t) } } } }

4 CONCLUSIONS AND FUTUREWORK
The persist ordering problem as observed with durable lock-free
data structures for non-volatile memory is described, and a hard-
ware solution that involves new persistent store instructions is
proposed. The problem exists in userspace such as durable lock-
free data structures, the interactions between user space and kernel
space such as SAP HANA interacting with OS demand paging, as
well as transformations as proposed for durable linearizability and
acquire-release persistency. The proposed instructions would elimi-
nate the problem for all such cases on Arm, and the persist ordering
problem is not limited to the Arm instruction set architecture.

We’re conscious that our hardware-based solution shifts the bur-
den from software developers to CPU designers, which carries a
significant implementation cost. As future work, we’ll quantita-
tively evaluate the cost of software-based solutions as compared to
the cost of the hardware-based solutions as proposed in this brief
announcement.

Session 8 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

310

REFERENCES
[1] Mihnea Andrei, Christian Lemke, Günter Radestock, Robert Schulze, Carsten

Thiel, Rolando Blanco, Akanksha Meghlan, Muhammad Sharique, Sebastian
Seifert, Surendra Vishnoi, et al. 2017. SAP HANA adoption of non-volatile
memory. Proceedings of the VLDB Endowment 10, 12 (2017), 1754–1765.

[2] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018.
Bztree: A high-performance latch-free range index for non-volatile memory.
Proceedings of the VLDB Endowment 11, 5 (2018), 553–565.

[3] Naama Ben-David, Guy E. Blelloch, and Yuanhao Wei. 2018. Making Concurrent
Algorithms Detectable. CoRR abs/1806.04780 (2018). arXiv:1806.04780 http:
//arxiv.org/abs/1806.04780

[4] HMCConsortium. 2015. Hybrid Memory Cube Specification 2.1. Technical Report.
[5] Tudor David, Aleksandar DragojevicÌĄ, Rachid Guerraoui, and Mihail Igor

Zablotchi. 2017. Log-Free Concurrent Data Structures. Technical Report.
[6] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. 2018. A

persistent lock-free queue for non-volatile memory. In Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
ACM, 28–40.

[7] Timothy L Harris. 2001. A pragmatic implementation of non-blocking linked-lists.
In International Symposium on Distributed Computing. Springer, 300–314.

[8] Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo Seltzer, Tim Harris, and
Steve Byan. 2018. Closing the performance gap between volatile and persistent
key-value stores using cross-referencing logs. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18). USENIX Association, 967–979.

[9] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. 2016. Brief an-
nouncement: Preserving happens-before in persistent memory. In Proceedings of
the 28th ACM Symposium on Parallelism in Algorithms and Architectures. ACM,
157–159.

[10] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. 2016. Lineariz-
ability of persistent memory objects under a full-system-crash failure model. In
International Symposium on Distributed Computing. Springer, 313–327.

[11] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M Chen,
Satish Narayanasamy, and Thomas F Wenisch. 2017. Language-level persis-
tency. In Computer Architecture (ISCA), 2017 ACM/IEEE 44th Annual International
Symposium on. IEEE, 481–493.

[12] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M Chen,
Satish Narayanasamy, and Thomas F Wenisch. 2017. Tarp: Translating acquire-
release persistency.

[13] Arm Ltd. 2016. ARM Architecture Reference Manual ARMv8, for ARMv8-A ar-
chitecture profile. Technical Report. https://developer.arm.com/docs/ddi0487/a/
arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

[14] Arm Ltd. 2016. ARM Architecture Reference Manual Supplement ARMv8.1, for
ARMv8-A architecture profile Documentation. Technical Report. https://developer.
arm.com/docs/ddi0557/latest

[15] Darko Makreshanski, Justin Levandoski, and Ryan Stutsman. 2015. To lock,
swap, or elide: On the interplay of hardware transactional memory and lock-free
indexing. Proceedings of the VLDB Endowment 8, 11 (2015), 1298–1309.

[16] Maged M Michael and Michael L Scott. 1995. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. Technical Report.
ROCHESTER UNIV NY DEPT OF COMPUTER SCIENCE.

[17] Matej Pavlovic, Alex Kogan, Virendra J Marathe, and Tim Harris. 2018. Brief
Announcement: Persistent Multi-Word Compare-and-Swap. In Proceedings of the
2018 ACM Symposium on Principles of Distributed Computing. ACM, 37–39.

[18] SNIA. 2017. Persistent Memory Atomics and Transactions v1.2. Technical Report.
[19] SNIA. 2019. NVM PM Remote Access for High Availability v1.08. Technical Report.
[20] John D Valois. 1995. Lock-free linked lists using compare-and-swap. In Pro-

ceedings of the fourteenth annual ACM symposium on Principles of distributed
computing. ACM, 214–222.

[21] John David Valois. 1996. Lock-free data structures. (1996).
[22] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. 2018. Easy lock-free

indexing in non-volatile memory. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE). IEEE, 461–472.

Session 8 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

311

http://arxiv.org/abs/1806.04780
http://arxiv.org/abs/1806.04780
http://arxiv.org/abs/1806.04780
https://developer.arm.com/docs/ddi0487/a/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/a/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0557/latest
https://developer.arm.com/docs/ddi0557/latest

	Abstract
	1 Introduction
	2 The Problem
	3 Solutions
	3.1 Software Solutions
	3.2 Persistent Stores
	3.3 Persistent Lock-free Queue

	4 Conclusions and Future Work
	References

