
Efficient State Retention through Paged Memory Management
for Reactive Transient Computing
Sivert T. Sliper

1
, Domenico Balsamo

1
, Nikos Nikoleris

2
,

William Wang
2
, Alex S. Weddell

1
and Geoff V. Merrett

1

1
{sts1u16, db2a12, asw, gvm}@ecs.soton.ac.uk;

2
{nikos.nikoleris, william.wang}@arm.com

1
School of Electronics and Computer Science, University of Southampton, UK;

2
Arm Research

ABSTRACT
Reactive transient computing systems preserve computational prog-

ress despite frequent power failures by suspending (saving state to

nonvolatile memory) when detecting a power failure, and restoring

once power returns. Existing methods inefficiently save and restore

all allocated memory. We propose lightweight memory manage-

ment that applies the concept of paging to load pages only when

needed, and save only modified pages. We then develop a model

that maximises available execution time by dynamically adjust-

ing the suspend and restore voltage thresholds. Experiments on

an MSP430FR5994 microcontroller show that our method reduces

state retention overheads by up to 86.9% and executes algorithms

up to 5.3× faster than the state-of-the-art.

KEYWORDS
Transient Computing, Internet of Things, Batteryless Computing

1 INTRODUCTION
Ambient energy sources are theoretically infinite, offering devices

powered by energy harvesting (EH) the potential for unbounded

lifetime. However, EH is an unstable power source, so today’s de-

vices require rechargeable batteries or large supercapacitors to

provide stability. Batteries and supercapacitors limit device life-

time and increase cost, size and environmental impact; avoiding

them may therefore provide a more scalable IoT.

Transient computing (TC) is an emerging paradigm where com-

putational progress is made despite a highly unstable power source;

thus enabling battery-less devices that are powered directly from

EH. Published works in software-based TC can be separated into

two fundamentally different approaches: static and reactive TC [13].

Static TC inserts state-saving checkpoints at design/compile time

[4, 12], or divides programs into small atomic tasks that are executed

by a runtime [5, 8–10]. However, static TC suffers from wasted en-

ergy spent on code re-execution and superfluous checkpoints/task-

transitions because optimal checkpoint placement or task decom-

position is difficult [4, 6]. When power fails, any execution since

the previous checkpoint/task-boundary has to be repeated in the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00

https://doi.org/10.1145/3316781.3317812

On-time (ms)

M
o
d

ifi
e
d

st
a
te

 (
%

)

50 100 150 200

50

100

0

Figure 1: Percentage of allocatedmemory that is modified at
the end of a power cycle in relation to on-time.

next power cycle. Doing so not only wastes energy, but also risks

inconsistencies between volatile and nonvolatile memory (VM and

NVM), so static methods must take expensive steps to re-execute

code safely [5, 9, 10]. Alpaca, a recent static TC approach, imposes

runtime overheads of 1.3 − 3.6× when continuously powered [10].

In contrast, reactive TC [1, 2, 7] uses interrupt-based supply

voltage monitoring to trigger Suspend and Restore operations which
maintain state persistency. The operations depend on hardware

architecture, but are independent of the application. Only when a

power failure is detected, Suspend saves a snapshot of CPU registers

and VM to NVM, then halts execution (sleep). When power returns,

the device sleeps until the supply voltage recovers beyond the

restore threshold to guarantee sufficient energy for the next Suspend,
then Restores state from a snapshot and resumes execution from

where it was interrupted. Thus, code re-execution is eliminated,

and superfluous save operations are minimised. Because of these

advantages, reactive TC is the focus of this work.

Existing reactive TC methods [1, 2] suffer from inefficient state

retention because the entirety of VM is saved and restored in every

power cycle. Recent works proposed tracking dynamic memory

to avoid backups of unallocated state [3, 15], henceforth termed

AllocatedState. However, we observe that not all allocated mem-

ory is modified or even referenced during power cycles with short

on-periods. Fig. 1 shows the result of an experiment measuring

the percentage of modified allocated memory in relation to the

on-time of a power cycle. The experiment was performed by exe-

cuting 128-bit AES encryption on a 2kB string on anMSP430FR5994

microcontroller [14] running at 8 MHz. Bhatti et al. [3] proposed

comparing the current state with a saved snapshot to identify un-

modified data, but this is only applicable for asymmetric memories

such as flash, where reads are much cheaper than writes [15]. For

FRAM, where reads and writes have the same energy cost, the

method is counterproductive. An alternative to explicit state reten-

tion is to use NVM as main memory [7], but this degrades overall

performance due to increased access energy [1, 14].

Z

Z C

a)

b)

vCC

C C

C

R

R

SC

Time

S

VON

LD LD SV+LD
OFF

OFF

Figure 2: Conceptual comparison between (a) AllocatedState,
and (b) ManagedState, in response to a power supply trace.

In this work, we propose ManagedState, a lightweight page-

based memory manager that tracks active and modified regions

of memory. We then develop a mathematical model that leverages

the memory manager to increase available execution time by cal-

culating suspend and restore voltage thresholds at runtime. Based

on device characteristics, the model also yields a constraint on

the number of active and modified pages. Because violating this

constraint may lead to a corrupt snapshot, the memory manager

maintains a limit on the number of modified pages by writing back

inactive modified pages when necessary.

A conceptual comparison between ManagedState and Allocat-

edState is shown in Fig. 2. Knowing precisely the active regions

of memory speeds up restore (R), while knowing which regions

are modified speeds up suspend (S). Improved suspend and restore

performance also enables runtime threshold adjustments to defer

suspend to the last possible moment and to wake up from sleep (Z)

and restore as early as possible; thus maximising the time spent on

useful computation (C). To enable this, ManagedState loads (LD)

pages as needed and saves (SV) pages to NVM at runtime.

The contributions of this work are:

• ManagedState, a page-based memory manager for tracking

active and modified regions of memory, resulting in 26.8 −

86.9% reduction in accumulated suspend and restore time,

with minimal memory footprint (84 − 1102B) and minimal

to moderate runtime overhead (1.05 − 1.48×) (Section 2).

• Runtime calculation of safe suspend/restore thresholds, based

on the amount of active and modified memory, that elim-

inate code re-execution and corrupt snapshots, as well as

increase available execution time. The combination of both

contributions result in up to 5.3× faster application execu-

tion (Section 3).

2 MANAGEDSTATE: TRACKING AND
LIMITING VOLATILE STATE

In order to load memory only when it is needed, and to avoid

writing unmodified data when suspending, tracking of active and

modified memory is necessary. While high-performance proces-

sors use hardware memory management units (MMUs) to translate

and control access to memory [11], low-power microcontrollers

suited for EH-powered applications do not have such features. Ad-

ditionally, MMUs are designed for applications with megabytes to

gigabytes of memory footprint as opposed to the kilobytes of a

typical embedded application.

ManagedState is a light-weight memory manager that applies

the well-known concept of paging to track accesses to volatile

memory. In this work, it is implemented and evaluated with bare-

metal applications, although it could also be used in conjunction

with a typical embedded/IoT operating system. Like traditional

paged memory, ManagedState loads pages only when they are

referenced, and writes them back to main memory only if they

are modified. However, ManagedState is much simpler: it does not

perform address translations or relocations, as the entire application

is assumed to fit in main memory.

To use ManagedState, the application calls Acquire before using
a block of data with a pointer to the start of the data in main

memory, the number of elements to be acquired and the reference

mode (RO/RW , explained later in this section). ManagedState is

then responsible for loading the relevant pages from NVM into

main memory and for maintaining their persistence through power

cycles. When the application no longer needs the block of data, it

calls Release with a pointer to the data, and the number of elements.

When possible, it is most efficient to process blocks of data one

page at a time; thus keeping only a single page active (or two, if an

element crosses a page boundary) without excessiveAcquire/Release
calls. For non-linear RW access, where data residing in several

different pages are accessed sporadically, the applicationmust either

acquire the entire block (minimal overhead, but keeps the entire

block active) or acquire a few elements at a time (minimal active

pages, but large overhead). A third option, to alleviate the overhead

of non-linear RW memory accesses, is to restructure the application

algorithm to improve locality, as demonstrated in Section 4.2.

Like AllocatedState, ManagedState saves and restores all CPU

registers, the stack, and the .data section. Additionally, Managed-

State provides a new section, .mmdata (memory managed data),

where application data can be allocated for efficient state retention.

.mmdata is divided into a set, P , of pages, p, where each page is

of size |p |. Accesses to variables located in .mmdata are tracked to

determine the following three sets at runtime.

• R: the resident set of pages held in main memory

• M : the set of modified pages

• A: the set of active, i.e. currently referenced, pages

A reference consists of the operationsAcquire and Release, shown
in Algorithms 1 and 2; these two operations maintain R,M and A.
There are two types of references:

• RO - Read Only reference

• RW - Read Write reference

An RO reference to a variable causes the corresponding page to

be added to A. Similarly, an RW reference to a variable causes the

corresponding page to be added to A and to M . If the page is not

already in R, it is loaded into main memory and added to R. The
number of references to each page is tracked. When the reference

count to a page p is 0, it is removed from A.
When suspending, all pages that exist inM are saved to NVM.

Pages which are in A, but not inM are not saved; their values are
already guaranteed to be persistent. Pages that are inM , but not in

A may be modified, but are not currently referenced; hence they

are safely removed fromM when they are saved to NVM. During

startup, the volatile state is restored. With the proposed method,

only active pages are loaded; that is, only pages in A. All other

Algorithm 1 Acquire a variable residing in .mmdata.

1: function Acqire(pointer , ReferenceMode)

2: p ← дetPaдeNumber (pointer)
3: if ReferenceMode = RW then
4: while |M | ≥ M̂ do
5: w ← nextPage ∈ LRU
6: if w < A then
7: saveNVM(w)
8: M ← M − {w}

9: M ← p ∪M

10: if p < R then
11: load(p)
12: R ← p ∪ R

13: re f Count[p] = re f Count[p] + 1
14: A← p ∪A

return

Algorithm 2 Release a variable residing in .mmdata.

1: function Release(pointer)

2: p ← дetPaдeNumber (pointer)
3: re f Count[p] = re f Count[p] − 1
4: if re f Count[p] = 0 then
5: A← A − {p}

return

pages will be loaded only when they are referenced.

The pages in M comprise the volatile state of .mmdata. Man-

agedState maintains an upper limit M̂ (determined in Section 3)

on the number of modified pages |M |. When an RW access that

would cause M̂ to be exceeded occurs, a page needs to be removed

from M . ManagedState finds a page in M that is not in A (a page

that may have been modified, but is not currently active), saves it

to NVM and removes it fromM . If no such page can be found, M̂
must be increased or the application’s usage of Acquire and Release
modified to reduce the number of concurrently active pages. A

least-recently-used (LRU) table is maintained to avoid excessive

page thrashing (repeated write-back of the same page). A page is

never loaded more than once during a power cycle.

3 SUSPEND AND RESTORE THRESHOLDS
When the supply voltage drops below the suspend threshold, sus-
pend is triggered and execution halted. Later, when supply recovers

beyond the restore threshold, restore is triggered to resume execu-

tion. To maximise the time spent on useful computation, and to

minimise superfluous state saving, suspend should be postponed

as much as possible, as illustrated in Fig. 2. Hence the suspend

threshold VS should be minimised, while still ensuring sufficient

energy for successful state saving. The restore threshold VR pro-

tects against re-execution, so must guarantee that sufficient energy

for suspend remains after restoring. For safety, VR must be calcu-

lated under the assumption that no energy is supplied after restore

begins. This minimum restore threshold is termed VR,min . Practi-

cal systems should increase VR beyond VR,min by a voltage ∆vC
that ensures a minimum of computational progress in every power

cycle. The optimal ∆vC depends on power supply characteristics

0 2 4 6 8 10
Time (ms)

0
1
2
3

Vo
lta

ge
 (V

) Restore Compute Suspend

vCC

vin

tR tC tS

Von

∆vR ∆vC ∆vS

tP

Figure 3: Safe restore and suspend thresholds, ensuring suffi-
cient energy to guarantee aminimumof useful computation
(tC) and a successful snapshot.

1 kB 2 kB 3 kB 4 kB 5 kB 6 kB 7 kB
Bytes saved/restored

0

2

4

6

8

Ti
m

e
(m

s)

t S t R = 0.00112*nbytes- 0.00687

Suspend
Restore

Figure 4: Execution time of suspend and restore operations.

and application constraints. For a low-current source, maximis-

ing ∆vC effectively amortises the cost of suspend and restore. In

contrast, minimising ∆vC makes the device more responsive to

events because of frequent wake-ups, but also less energy efficient

because less computation is done per power cycle. For a sparse sup-

ply, where energy arrives in short pulses, ∆vC should be small to

ensure that every pulse is utilised instead of being wasted through

leakage and sleep currents.

Fig. 3 shows measured voltage traces and operation on a worst-

case power pulse, which chargesvcc toVR , then immediately drops

to zero. As is typical for microcontrollers, the one used in this work

draws nearly constant current (6% variation) over its operating

voltage range because of its on-chip linear voltage regulator [14].

Current draw does, however, depend on peripherals, so the applica-

tion’s most power-hungry combination of simultaneously active

peripherals should be assumed when calculating suspend/restore

thresholds. Constant current draw makes the suspend, restore and

compute voltage drops ∆vS , ∆vR and ∆vC , respectively, propor-
tional to their respective execution times tS , tR and tC . Thus, a
linear model is suitable to calculate the threshold voltages

VS = Von + ∆vS = Von +
∆vCC
∆t

tS , (1)

VR = VS + ∆vC + ∆vR = VS +
∆vCC
∆t
(tC + tR). (2)

The voltage drop
∆vCC
∆t can be calculated from the platform’s

current draw I and capacitance C as

∆vCC
∆t

=
I

C
, (3)

although measuring
∆vCC
∆t directly is often simpler.

Furthermore, tS and tR are proportional to the amount of data

to be saved/restored, as shown in Fig. 4, where the average exe-

cution time of suspend and restore were measured in relation to

the amount of memory saved/restored. The dashed line shows the

linear fit, confirming that

tS (nbytes) ≈ tR (nbytes) = αnbytes , (4)

where α is the time it takes to read/save one byte, and nbytes is
the number of bytes saved/restored, yields accurate estimation of

tS and tR . The constant term shown in the figure is negligible for

reasonable snapshot sizes (> 10 B). Combining (1), (2) and (4) yields

VS = Von +
∆vCC
∆t
(αnut + α |p | |M |), (5)

VR = VS +
∆vCC
∆t
(tC + αnut + α |p | |A|), (6)

where nut is the number of untracked bytes, which must be saved

and restored in every power cycle. Hence nut + |p | |M | is the number

of bytes written during suspend, and nut + |p | |A| is the number of

bytes read during restore. The CPU registers, allocated stack, tables

of ManagedState, and untracked application variables comprise

the untracked memory. The restore threshold has an upper bound

Vmax , given by the maximum output voltage of the supply or the

maximum operating voltage, constraining VR to

VR ≤ Vmax . (7)

Substituting (5) and (7) into (6) and rearranging yields the con-

straint

|A| + |M | ≤
Vmax −Von
∆vCC
∆t α |p |

−
tC
α |p |
−
2nut
|p |
, (8)

determining the maximum number of modified pages at runtime as

M̂ = f loor
(Vmax −Von

∆vCC
∆t α |p |

−
tC
α |p |
−
2nut
|p |
− |A|

)
. (9)

During runtime, VR and M̂ are updated when a page is acquired

or released, while VS is updated when the application issues an

RW reference and when saving modified pages during suspend.

Calculating M̂ at runtime maximises the capacity ofM , minimising

the number of pages saved during execution, while still eliminating

corrupt snapshots and re-execution by guaranteeing the success of

future suspends and restores.

4 EXPERIMENTAL VALIDATION
Memory tracking and runtime threshold calculation was experi-

mentally validated on an MSP430FR5994-based development board.

No energy storage beyond the platform’s 10 µF decoupling capaci-

tance was added. This small capacitance limits the amount of state

that can be safely restored and suspended in an on-period. For large

applications, this necessitates techniques such as this work to limit

said state during runtime, as demonstrated in Section 4.3.

32 64 128 256
Page size (bytes)

0

20

40

60

80

A
cc

u
ra

cy
 (

%
)

(a)

32 64 128 256
Page size (bytes)

0

10

20

30

40

50

O
v
e
rh

e
a
d
 (

%
)

(b)

Figure 5: (a) Tracking accuracy and (b) suspend time over-
head, in relation to page size |p |.

4.1 Benchmarks
Like hierarchical memory systems, ManagedState’s performance

depends mainly on the application’s memory access patterns. Three

benchmarks that reflect typical tasks for IoT sensing devices and

exhibit different memory access behaviour were used for evaluation:

• AES: 128-bit AES encryption of a 2kB string. Typically used

to secure communication.

• CRC32: 32-bit checksum generation. Typically used for er-

ror checking of communication payloads.

• MATMUL: Multiplication of two 25 × 25 matrices of 16-bit

values. Representative workload for signal processing and

classification tasks.

AES and CRC32 access memory linearly, hence ManagedState

tracks their memory accesses efficiently. In contrast, MATMUL,

accesses memory in a sparse and repetitive manner, leading to

excessive Acquire and Release calls, hence large overhead. AES

modifies the whole data buffer, while MATMUL only modifies the

output buffer and CRC32 only modifies a single output variable.

4.2 Memory Tracking
Efficient and safe state retention through power cycles is the main

aim of this work. Memory consistency was verified by taking a

core dump (capturing memory and processor state using a debug-

ger) immediately before suspending state, then power cycling the

platform, then another core dump immediately after restoring the

state. The allocated portion of the two core dumps were confirmed

as identical, thus state is consistent through power cycles.

The page size |p | affects tracking accuracy, suspend performance

and memory overhead. To evaluate accuracy, the number of bytes

saved during suspend by ManagedState (i.e. nut + |p | |M |) while exe-
cuting the AES benchmark were compared with the actual number

of modified bytes since the previous snapshot. Tracking accuracy

decreases with increased page size (Fig. 5a). Execution time over-

head of suspend was measured and compared to the time taken to

save the same amount of state without paging. Decreased page size

leads to increased suspend overhead (Fig. 5b) because of the larger

number of page attributes to maintain.

The static memory overhead of ManagedState consists of the

LRU and attribute tables. The LRU table consists of M̂ 1-byte page-

number entries. The attribute table consists of |P | 1-byte entries;
each entry’s MSB indicate whether the page is loaded (in R), the
next bit indicates whether the page is modified (in M), and the

Table 1: Overhead of ManagedState on a continuous supply
when compared to AllocatedState.

Benchmark Runtime overhead Memory overhead
AES 1.05× 86 B (3.5%)

CRC32 1.14× 86 B (3.5%)

MATMUL 6.81× 86 B (5.0%)

MATMUL_TILED 1.48× 102 B (2.5%)

remaining 6 bits constitute the reference counter (A = {p ∈ P :

Re f erenceCounter [p] > 0}). For the remainder of the experiments,

|p | = 128 B, balancing suspend overhead, memory overhead and

tracking accuracy.

ManagedState’s memory overhead and application execution

time was compared to that of AllocatedState, results are shown

in Table 1. The runtime overheads of AES and CRC32 are both

small. MATMUL, however, has very large overhead due to poor

spatial and temporal locality. There are two ways to alleviate the

overhead of MATMUL. The first is to acquire all three matrices,

perform the computation, then release; this alleviates the track-

ing overhead at the expense of restore and suspend performance.

This solution yields nearly identical results to using AllocatedState,

which also loads/saves the entire matrices at every restore/suspend.

The second alternative is to improve locality by e.g. using a tiled

implementation – a technique often used for performance improve-

ment in systems with hierarchical memory. Computing MATMUL

using 5×5 tiles, reduced the overhead to 1.48× (MATMUL_TILED in

Table 1). The matrices were now acquired 3 tiles at a time (2 inputs,

1 output), maintaining superior suspend and restore performance

when compared to AllocatedState, as evaluated in 4.3. For the re-

mainder of the paper, MATMUL_TILED will be used for evaluation,

due to the large overhead of the naive MATMUL implementation.

4.3 Suspend and Restore Time
ManagedState allows large applications to run intermittently. Fig. 6

shows the result of a comparison between the suspend and restore

times (proportional to energy) of AllocatedState and ManagedState

in relation to application size while running the AES benchmark.

The size of the string was modified to vary the application size. For

fair comparison, on-time was set higher than the application’s run

time. Both methods’ suspend times grow linearly until ≈ 3 kB. Allo-
catedState can no longer find a safe restore threshold after 3.93 kB
(shaded area on the figure), because the platform’s capacitance

cannot store sufficient energy for a safe restore-compute-suspend

cycle. The dashed line shows projected suspend/restore time for Al-

locatedState, growing linearly with application size. ManagedState

limits volatile state according to M̂ , thus keeping suspend time at a

safe level regardless of application size.

ManagedState provides substantial improvement in suspend and

restore performance. Fig. 7 shows measured accumulated suspend

and restore time, tS+R = tS + tR , in relation to on-time. The re-

duction in tS+R when compared to AllocatedState (dashed line) is

26.8 − 86.9%, 86.7% and 49.9 − 65.3% for AES, CRC32 and MAT-

MUL_TILED, respectively. For AES, tS+R grows linearly until on-

time approaches the run time of the application. For CRC32, tS+R
remains constant, because only a single page is active and only a

1 2 3 4 5 6 7 8
Application size (kB)

0

2

4

6

8

E
xe

cu
ti

o
n
 t

im
e
 (

m
s) AllocatedState

Suspend
Restore

1 2 3 4 5 6 7 8
Application size (kB)

0

2

4

6

8

E
xe

cu
ti

o
n
 t

im
e
 (

m
s) ManagedState

Suspend
Restore

VR > Vmax

Figure 6: Suspend and restore time of ManagedState and Al-
locatedState in relation to application size.

0
1
2
3
4

0 100 200 300 400
On-time (ms)

2
4
6
8
0
1
2
3
4

AllocatedState
ManagedState

S
u
sp

e
n
d
 +

 R
e
st

o
re

 t
im

e
 (

m
s)

AE
S

C
RC

32
M

AT
M

U
L_

TI
LE

D

Figure 7: Accumulated suspend and restore time in relation
to the on-time of a power cycle.

single page is modified, as CRC32 accesses data linearly and only

modifies a single output variable. MATMUL_TILED quickly reaches

M̂ , after which ManagedState starts saving modified pages to NVM.

4.4 Suspend Threshold
Adjusting the suspend threshold at runtime assures that snapshots

are saved successfully while maximising energy spent on applica-

tion execution. The safety and accuracy of the suspend threshold

was evaluated by using an oscilloscope to measure vCC at the start

and completion of the suspend operation, vstar t and vcomplete ,

respectively. A function generator provided 3.6 V square-wave

pulses to power the platform which executed AES. The range of

on-time spans from a short 10 ms pulse, modifying only a few

pages, to a long 350ms pulse, sufficient to finish the entire appli-

cation. The results, shown in Fig. 8, show that the method adjusts

the suspend threshold such that corrupt snapshots are avoided,

i.e. vcomplete > VON , while wasting minimal energy by keeping

vcomplete close to VON . The variance of vcomplete increases with

the amount of state saved (proportional to on-time), indicating im-

perfections in the constant-current model of Section 3. However,

to minimise overhead, the computational complexity must be low.

0 100 200 300
On-time (ms)

1.8

2

2.2

2.4

Su
pp

ly
 v

ol
ta

ge
 (V

)

VON

Start Complete

Figure 8: Supply voltage at the start and completion of sus-
pend. Points show the average of 10 measurements, the bars
show minimum and maximummeasurements.

4.5 Application Performance
Benchmark run times were compared against AllocatedState while

powered by an intermittent supply, as shown in Fig. 9. For clear

and repeatable results on an intermittent supply, the platform was

powered by 3.6 V variable-width square-wave pulses from a func-

tion generator. A rectifying diode was used to prevent the function

generator from discharging the platform during off-periods; thus

vCC discharges gradually through the platform’s current draw. Op-

eration is shown in Fig. 3, where tP denotes pulse width (note that

the figure shows a minimal pulse that barely suffices to charge vCC
to vR). The duty cycle of the square-wave was adjusted such that

the platform’s capacitance was completely discharged (through

leakage and sleep current) between the pulses. Using a real energy

harvester for evaluation would make the results difficult to reason

about, and hardly repeatable, because of the complex dynamics of

specific harvesters in relation to their environment. Because our

method’s application performance depends largely on on-time, the

square-wave results are readily transferable when considering our

method for use with a specific energy harvester.

ManagedState is most effective when on-periods are short, com-

pleting the application up to 5.3× faster than AllocatedState. The

extra execution time gained by restoring early and deferring sus-

pend, as well as the improved suspend and restore performance,

becomes less significant when on-time increases. Hence the run

time of ManagedState approaches the overheads from Table 1 when

on-time approaches an application’s completion time.

5 CONCLUSIONS
Tracking memory references can alleviate the inefficiencies of ex-

isting state retention methods, reducing accumulated suspend and

restore time by 26.8 − 86.9%, at a small cost in runtime overhead

(1.05 − 1.14×) for applications with good locality. For applications

with poor locality, tracking becomes expensive (6.81× overhead),

but this may be alleviated by improving locality (1.48× overhead).

Limiting the amount of state to be saved when power fails (M),

allows larger application size (.data > 4kB) without corrupt snap-
shots. Runtime calculation of suspend and restore thresholds cap-

italise on efficient state retention to improve energy efficiency,

while still protecting against corrupt snapshots. Combining mem-

ory tracking using ManagedState, and runtime suspend and restore

threshold calculations resulted in up to 5.3× faster algorithm exe-

cution time when on-time was short. In the future, this work may

be integrated into a suitable operating system, allowing transient

operation without the burden of inefficient state retention.

AES CRC32 MATMUL_TILED
0.0

0.5

1.0

1.5 5 ms 10 ms 20 ms 50 ms 300 ms 500 ms

R
u
n
 t

im
e
 (

n
o
rm

.)

Figure 9: Benchmark run time relative to AllocatedState
when powered by square-wave pulses.

ACKNOWLEDGMENTS
Source code is available at https://git.soton.ac.uk/energy-driven.

Experimental data associated with the paper is available at DOI:

10.5258/SOTON/D0835. This work was supported by the Engineer-

ing and Physical Sciences Research Council (EPSRC) under an

iCASE award and Grant EP/P010164/1.

REFERENCES
[1] Domenico Balsamo, Alex S Weddell, Anup Das, Geoff V Merrett, Bashir M Al-

hashimi, Davide Brunelli, and Luca Benini. 2016. Hibernus++ : A Self-Calibrating

and Adaptive System for Intermittently-Powered Embedded Devices. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. – TCAD 35, 12 (2016), 1968–1980.

[2] Domenico Balsamo, Alex S. Weddell, Geoff V. Merrett, Bashir M. Al-Hashimi,

Davide Brunelli, and Luca Benini. 2015. Hibernus: Sustaining Computation

During Intermittent Supply for Energy-Harvesting Systems. IEEE Embedded Syst.
Lett. 7, 1 (2015), 15–18.

[3] Naveed Anwar Bhatti and Luca Mottola. 2016. Efficient State Retention for

Transiently-powered Embedded Sensing. In Proc. ACM Int. Conf. Embedded Wire-
less Systems Networks – EWSN. 137–148.

[4] Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient Code Instru-

mentation for Transiently-powered Embedded Sensing. In Proc. ACM/IEEE Int.
Conf. Inf. Process. Sensor Netw. – IPSN. Pittsburgh, PA, USA, 209–219.

[5] Alexei Colin and Brandon Lucia. 2016. Chain: tasks and channels for reliable

intermittent programs. In Proc. ACM SIGPLAN Int. Conf. Object-Oriented Prog.,
Syst., Languages, Appl. – OOPSLA, Vol. 51. Amsterdam, Netherlands, 514–530.

[6] Alexei Colin and Brandon Lucia. 2018. Termination checking and task decomposi-

tion for task-based intermittent programs. In Proc. IEEE/ACM Int. Conf. Compiler
Construction – CC. 116–127.

[7] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014. QUICKRE-

CALL: A Low Overhead HW/SW Approach for Enabling Computations across

Power Cycles in Transiently Powered Computers. In 2014 27th International
Conference on VLSI Design and 2014 13th International Conference on Embedded
Systems. 330–335.

[8] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2016. Energy-Aware

Memory Mapping for Hybrid FRAM-SRAM MCUs in IoT Edge Devices. In IEEE
Int. Conf. VLSI Design. 264–269.

[9] Brandon Lucia and Benjamin Ransford. 2015. A simpler, safer programming

and execution model for intermittent systems. In Proc. ACM SIGPLAN Conf.
Programming Language Design Implementation – PLDI. 575–585.

[10] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: intermittent

execution without checkpoints. Proc. ACM Programming Languages 1 (2017).
[11] David A. Patterson and John L. Hennesey. 2016. Computer Organization And

Design (1 ed.). Morgan Kaufmann.

[12] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System sup-

port for long-running computation on RFID-scale devices. In Proc. ACM Int.
Conf. Architectural Support Programming Languages Operating Systems – ASPLOS.
Newport Beach, CA, USA, 159–170.

[13] Sivert T. Sliper, Domenico Balsamo, Alex S. Weddell, and Geoff V. Merrett. 2018.

Enabling Intermittent Computing on High-performance Out-of-order Processors.

In Proceedings of the 6th International Workshop on Energy Harvesting & Energy-
Neutral Sensing Systems (ENSsys ’18). ACM, New York, NY, USA, 19–25.

[14] Texas Instruments. 2017. MSP430FR599x , MSP430FR596x Mixed-Signal Micro-

controllers Datasheet. (2017).

[15] Theodoros D. Verykios, Domenico Balsamo, and Geoff V. Merrett. 2018. Selective

policies for efficient state retention in transiently-powered embedded systems:

Exploiting properties of NVM technologies. Sustainable Computing: Informatics
and Systems (2018).

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20190429080835
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

